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F O R W A R D 

As CITeR passes its 20th year, it is clear that challenges remain in 
identification technology research. There is rapid deployment of 
biometric and identity technologies from far reaching applications 
including border security, defense, benefits distribution, forensics, and 
disaster relief, to consumer electronics, e-commerce, and banking.  
This expansive use makes it clear that continued research is needed 
to address the unique range of technological challenges including 
sensing, quality, matching, fusion, security, privacy, perception, 
fairness, and distinctiveness.  

To aid in methodically addressing the needs, CITeR launched the 
Technology Roadmap effort. The goal of the CITeR Technology 
roadmap is to establish a resource for utilization by researchers and 
government and industrial organizations to help guide and develop 
research toward achievement of a future state. 

The creation process is fueled by an exchange between researchers 
and government and industrial affiliates working together to develop 
end state vision and operation concepts along a 3-10 year timeline. 
The resulting technology roadmap is envisioned as a living reference 
document to help guide CITeR’s work for years to come.
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SECTION I  |  Approach

1. Approach

The effort began with a small core team of government, academia & industry members followed by a 
broadened effort to receive feedback from the larger CITeR community. The framework has two tiers:  
(Tier 1) Application Areas and (Tier 2) the Technology Concepts.  Application Areas give the future vision 
and Technology Concepts describe the enabling technologies needed to achieve that vision.

a.	 Application Areas (Tier 1) 
	 The Application Areas are how we envision identification technologies in the future. The approach is  
	 blue-sky thinking which is not constrained by today’s technology. Thisincludes operational concepts  
	 and advanced system architectures. The output for each is a 1-2 page description detailing the  
	 applications including ‘Current Mission Needs’and ‘Enabling Technologies’. 

	 A.	 Biometrics in Border Control
	 B.	 Standoff Identification 
	 C.	 Trust in biometrics
	 D.	 Real-time Threat Identification
	 E.	 Identity Proofing
	 F.	 Forensic Analysis
	 G.	 Encounter-Based Intelligence Analysis
	 H.	 Consumer Authentication and Access Control

b.	 Technological Concepts (Tier 2) 
	 The next step is determining the enabling Technology Concepts needed to realize Application Areas.  
	 The Technology Concepts are mapped to Application and grouped into seven Technology Concepts  
	 “Families” listed below. Each Technology Concept  has a 1-2 page description containing Background,  
	 Future Vision and Keywords.  

	 1.0	 Sensors and data collection
	 2.0	 Image quality, preprocessing
	 3.0	 Biometric modality matching
	 4.0	 Data analytics & fusion
	 5.0	 Security, privacy, perception
	 6.0	 Distinctiveness, permanence, demographics
	 7.0	 Other, extension to another area beyond biometrics

c.	 Identify strategic technology progression
	 The last step is to identify most impactful technologies that require research and development and  
	 establish a time-phased investment priorities based on near-term, mid-term, and far-term, as defined below.
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	 Near Term:
	 ·	 Proven in laboratory or test environments using operational conditions – it is mature.
	 ·	 Rapidly emerging technology with broad investment – it will develop quickly.
	 ·	 Does not require many organizations to determine acceptability of solutions or pre-coordination has  
		  occurred with general agreement of acceptability of solutions – ready to gain acceptance.

	 Mid Term:
	 ·	 Proven in a research environment, more technology development needed. Not evaluated under  
		  operational conditions.
	 ·	  Niche technology without broad investment.
	 ·	 Requires coordination across many (3+) organizations to determine acceptability of outcomes.

	 Long Term:
	 ·	 Technology concept is notional or theoretical. May depend on technology that does not yet exist.
	 ·	 Very little research has been performed.  Research in disparate areas may be needed to make  
		  technology progress.
	 ·	 Technology development will require many years of coordination across multiple organizations (3+).



SECTION II  |  Interactive Charts

Biometrics in Border Control
FAR-TERM 
15+ YEARS

NEAR-TERM
0-5 YEARS

MID-TERM
6-15 YEARS

SENSORS & DATA COLLECTION | 1.0

IMAGE QUALITY, PREPROCESSING | 2.0

BIOMETRIC MODALITY MATCHING | 3.0

DATA ANALYTICS & FUSION | 4.0

SECURITY, PRIVACY, PERCEPTION | 5.0

DISTINCTIVENESS, PERMANENCE,  
DEMOGRAPHICS | 6.0

 
OTHER, EXTENSION  

BEYOND BIOMETRICS | 7.0

- Digital document design, issuance, 
verification, authentication

- Threat assessment: contraband, 
weapons, backpacks, bombs, etc
- MRI/mmWave Scan 

- Higher quality contactless fingerprint 
capture

- Automobile-based biometrics & 
people counting; high quality face 
capture through moving automobiles, 
automobile identification

Application Area:  
Biometrics in Border Control 

Establishing the identity of the traveling 
public at the country’s border is paramount. 
Biometric solutions are increasingly used 
to identify the traveler at multiple points 
throughout the travel and inspection 
process to provide a more personalized 
travel experience and increase the efficiency 
and security of the border control system. 

Many countries and political unions have 
different environments for border control 
such as airports, land ports, and seaports 
which support different modes of transport 
(i.e. auto crossings, pedestrian queues, bus 
processing). The mission of border control 
requires rapid, nonobtrusive biometric 
capture. The quality of the biometric 
samples must also be of sufficient quality 
to be searched and matched against large 
enterprise level biometric identification 
systems. 

citer.clarkson.edu
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BIOMETRICS CHART

http://citer.clarkson.edu
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A.	 Biometrics in Border Control
	 Establishing the identity of the traveling public at the country’s border is paramount. Biometric solutions  
	 are increasingly used to identify the traveler at multiple points throughout the travel and inspection  
	 process to provide a more personalized travel experience and increase the efficiency and security of the  
	 border control system. Many countries and political unions have different environments for border  
	 control such as airports, land ports, and seaports which support different modes of transport (i.e. auto  
	 crossings, pedestrian queues, bus processing). The mission of border control requires rapid, non- 
	 obtrusive biometric capture. The quality of the biometric samples must also be of sufficient quality to  
	 be searched and matched against large enterprise level biometric identification systems.

	 Many of the varied environmental scenarios for processing of travelers at the border present opportunities  
	 for the use of different biometric solutions. For example, some environments are outdoors, some  
	 require the use of mobile technology, and some are cooperative. These different scenarios invite out- 
	 of-the-box thinking of how to approach the problem and are open to new modalities and hardware for  
	 both enrollment and capture.

	 Enabling Technologies
	 ·	 Privacy protections for the storing and sharing of biometric data
	 ·	 Secure biometric data sharing
	 ·	 Better facial recognition algorithms which matching with partially masked faces
	 ·	 Differentiation of twins and doppelganger - face recognition for high resolution imaging
	 ·	 Higher quality contactless fingerprint capture
	 ·	 Mobile ID verification
	 ·	 Remote enrollment of verified high quality biometrics
	 ·	 Automobile-based biometrics and people counting; high quality face capture through  
		  moving automobiles, automobile identification (?)
	 ·	 Biometrics on the move, outdoors
	 ·	 Group face capture at speed
	 ·	 Threat assessment: contraband, weapons, backpacks, bombs, etc
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	 (Enabling Technologies continued) 
	 ·	 Resistance to high tech attacks, deep fakes, morphing, doppelgangers
	 ·	 Digital document design, issuance, verification, authentication
	 ·	 External API to clients for services: proliferation of services and APIs to simplify and standardize  
		  transactions within a biometrics domain architecture according to message standards
	 ·	 MRI/mmWave Scan

B.	 Standoff Identification (long distance, 100 meters or more)
	 Face recognition at a distance (FRAD) is concerned with the automatic recognition of non-cooperative  
	 subjects over a wide area. This remote biometric collection and identification problem can be  
	 addressed with an active vision system where people are detected and tracked with wide-field-of- 
	 view cameras. Face recognition at a distance will enable watch-list recognition for security at terminals  
	 and critical infrastructure, intruder detection and identifying whitelist personnel. Furthermore, the ability  
	 to collect biometrics at a distance (e.g., aerial, satellite imagery) would provide tactical users with  
	 critical information on subjects without the need for their cooperation. Standoff biometrics capabilities  
	 may reduce the time on-site for tactical forces, minimizing the window of opportunity for hostile forces 	 
	 to ambush, maneuver, or collect intelligence on friendly forces. Major challenges in FRAD are:  
	 1) detecting and obtaining sufficient face image resolution at long range during at anytime of day, 2) 	  
	 removal of image distortion caused by atmospheric effects, 3) tracking subjects and accurately  
	 matching facial images obtained from unconstrained, non-ideal poses. Therefore, the components  
	 of a high-performing FRAD system will consist of many different algorithms (image enhancement,  
	 super-resolution, key-frame selection, face detection, face tracking and recognition). Novel sensors  
	 such as multispectral/ hyperspectral and stereoscopic binocular imagery have been implemented to  
	 address these challenges. For example, hyperspectral cameras are known to provide better  
	 discriminative information for object recognition than visible spectrum ones. Hyperspectral imagery  
	 can be used for material classification and identification. However, a major problem with hyperspectral  
	 cameras is the insufficient spatial resolution for distance object/face recognition. Stereoscopic  
	 binocular imagers have been used to isolate persons of interest in images with several faces captured  
	 at a distance.

Examples of current mission needs:

	 1.		 Face Detection:  Face detection at a distance in a scene is a major task since the quality of  
			   surveillance images are poor (i.e., insufficient pixels on the face). Face detection algorithms need to  
			   be investigated and combined with other image processing tools (e.g., image enhancement and  
			   super-resolution).
	 2.		 Face Tracking: A FRAD systems needs to be equipped with an adaptive target selection mechanism  
			   (a face in a watch list) based on the current actions and history of each tracked subject to help  
			   ensure that facial images are captured for all subjects in view for post-processing.
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	 3.		 Super-resolution: Face recognition at a distance with low-resolution face images is a difficult  
			   problem in face biometrics. Advanced video super-resolution algorithms need to be developed and  
			   optimized solely for face recognition at a distance.
	 4.		 Soft biometric information: Soft biometric information extracted from a human body (e.g., height,  
			   gender, skin color, hair color, gait, and so on) is ancillary information easily distinguished at a  
			   distance, but it is not fully distinctive by itself in recognition tasks. However, this soft information  
			   can be explicitly fused with biometric recognition systems to improve the overall recognition when  
			   face images are captured in poor quality conditions with high variability.
	 5.		 Multispectral/Hyperspectral face detection/identification: Hyperspectral cameras are known to  
			   provide better discriminative information for object recognition than visible spectrum ones. For  
			   example, spectral measurements in infrared allow sensing of objects at night, and extract features  
			   which are invariant to orientation and reflection. Hyperspectral imagery can also be used for  
			   material classification and identification. Major challenges with hyperspectral cameras is  
			   insufficient spatial resolution for distance object/face recognition and cross-spectral face  
			   recognition (i.e. matching a short-wave infrared probe against a visible gallery).

	 ·		  Sub-pixel personnel detection at an extreme distance: Aerial pixel/subpixel face/personnel detection 	  
			   is an important research area in tactical applications. Images captured from UAVs/satellites can be  
			   used for personnel face detection. Thermal hyperspectral imagery can be used to detect subpixel  
			   faces, because a single hyperspectral pixel contains multiple materials. Novel unmixing methods 	  
			   can be used to decompose a hyperspectral pixel into its endmember spectra.

C.	 Trust in Biometrics
	 Biometrics technologies have become the primary tools for verifying identity in recent times across  
	 many different applications from customs and border protection, to controlled access to facilities, to  
	 user authentication in smart devices. However, its continued acceptance requires addressing the issue  
	 of people’s trust in the system which may be dented by anecdotal reports of issues such as  
	 compromised templates due to data breaches, or biases in the system, or performance shortcomings.  
	 Efforts to maintain trust will necessarily need to address three main objectives for the technology,  
	 viz, privacy of the biometric data, fairness of the system, and adoption of better standards to evaluate  
	 the “trustworthiness” of the technology.

	 Examples of current mission needs:

	 1.		 Explainable biometric systems that will enable introspection of models to ascertain the reasoning  
			   involved in the predictions from biometric features and increase transparency.
	 2.		 Creating bias free representations
	 3.		 Data biases, arising from the data distributions that biometric models are trained on, will need to be  
			   identified and rectified by explicitly accounting for the imbalanced data and implementing novel  
			   optimization algorithms that minimize its effect.
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	 (Examples of current mission needs continued)
	 4.		 Model/algorithmic biases will need to be addressed and suitable changes in architecture and  
			   design implemented to improve the general fairness of the system.
	 5.		 Increased transparency on how the system manages user data and storage, while preserving the  
			   privacy of biometric templates to provide better assurance to users.
	 6.		 Advances in cryptography to facilitate the generation of highly secure biometric data that will be  
			   less prone to leakage of uniquely identifiable information in addition to being resilient to various  
			   types of presentation attacks..
	 7.		 Providing increased cancelability to biometric templates to promote non-linkability of the user’s  
			   biometric data across various databases which addresses both issues of spoofing and user data leakage.
	 8.		 Identification of current shortcomings of biometric technology with respect to credibility will  
			   prompt creation of improved standards and metrics to evaluate performance and consequently,  
			   their reliability.
	 9.		 Evaluation benchmarks across various dimensions of fairness will result in clearer perceptions of  
			   how different biometric modalities and models perform.
	 10.	 Revised standards can describe expectations from biometric systems and levels of acceptability in  
			   various application areas which will reinforce positive public perception of such systems.
	 11.	 Improvement in real time multimodal biometric systems could reduce reliance on one particular  
			   modality of biometric recognition (like face). This would considerably reduce false positives in  
			   scenarios such as surveillance, thereby reducing misidentifications thereby improving trust.

D.	 Real-time Threat Identification
	 Within industrial settings, government facilities, or other controlled access locations, biometrics can  
	 play a role in rapidly identifying persons that can represent a potential threat through the identification  
	 of persons on a watchlist, persons of interest, or persons that do not have authorization for access to a  
	 controlled area. Future surveillance systems will have the capability to alert security personnel in near  
	 real time (within a few seconds) when a person of interest (POI) is detected using biometric technology.  
	 Such a surveillance system should also be able to detect obfuscation attacks, where an individual  
	 deliberately seeks to avoid being detected by it.

	 The identification of a threat would use technology such as facial recognition, contactless fingerprint  
	 collection, and other physiological characteristics such as gate, thermal characteristics, facial  
	 expression, threatening behavior (e.g., wielding a firearm) or a fusion of characteristics.

	 Collection technology will enable the collection of usable biometrics from longer distances as a result  
	 of higher resolution cameras and intelligent construction of usable data (e.g., creating a frontal face  
	 image from non-frontal images).

	 These surveillance eco-systems will comprise mobile and fixed cameras, access control biometric  
	 enrollment systems, watchlist systems, biometric matching systems, security operations centers, and  
	 alerting systems. The surveillance eco-system will increasingly move processing to the edge as 	  
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	 computing technology evolves providing faster local response to threat detection. Networks of  
	 surveillance systems within an enterprise will be able to share biometric data for potential threats, track  
	 POIs as they appear in different locations, and provide the capability to search live surveillance data  
	 such as video feeds to identify past encounters of a POI. Central machine learning systems will collect  
	 images and video of threatening behavior or situations to develop deployable models for automated  
	 identification of threats such as performing physical harm, exposing weapons, suspicious behavior, etc.

	 With the integration of GIS, security officers will track a POI’s location history to develop and study  
	 patterns of behavior. On a broader scale, to include integration within national security systems, it will  
	 become easier to identify and track POIs.

	 Enabling Technologies
	 ·	 Raising TRL levels for biometric detection from video feeds
	 ·	 Development of smart edge devices for collection and alerting
	 ·	 Edifice or campus level surveillance eco-systems will manage biometric data, matching, and  
		  detection of biometrics (e.g., faces)
	 ·	 Enterprise level integration of data and systems

E.		 Identity Proofing
Identity proofing or establishment of identity for a relying party is vital for many real-world 
transactions and interactions. In a digitally interconnected world where all manner of personally 
identifiable information about most individuals is easily available from a simple online search, 
identity theft (or people posing as someone else) during the process of account creation (e.g. 
banking, credit, passports, visa, etc) will continue to be an issue of serious concern.

The first step to setting up an identity may involve some of the following steps: (1) having users 	  
present documents (e.g. passports, drivers license) in person or more commonly remotely,  
(2) checking that the documents are valid and not forged, (3) checking that the information on the  
document corresponds to the authoritative source (e.g. DMV, Dept of State), (4) determining if the  
individual presenting the document matches the biometric information present on the document  
(e.g. selfie versus ID photo match); (54) searching amongst a biometric database to ensure that the  
person matches against their biometric (if available) and that the person does not have multiple  
identities (deduplication); and optional (6) read and verify the ID information if the document is  
embedded with an IC chip.

In the future, we envision a world where individuals have control over their identity information and  
can choose identity providers to vouch for their identity to other relying parties. These trusted 
parties can incorporate biometric technology in a secure manner where their identity is assured and  
cannot be “taken over” by those who may want to steal it. These identity providers are able to reveal  
as much information as needed, such as confirming age without revealing birthday, confirming 	  
address, providing full identity information if approved by individual (e.g., applying for loan), etc.

SECTION III  |  Application Areas
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	 Enabling Technologies
	 ·	 Biometrics at birth, for a lifetime	 ·  Biometrics as a service
	 ·	 Remote enrollment	 ·  Self sovereign identity
	 ·	 Mobile IDs		  ·  Resistance to attack
	 ·	 Ensuring high quality samples, dealing with 	 ·  Large scale search for deduplication 
		  low quality samples 	 ·  Studies of individuality/permanence
	 ·	 Studies in children/infants 	 ·  Architectural security
	 ·	 Detection of document fraud (e.g., paper fingerprint)	 ·  Mobile liveness
	 ·	 Trusted path to biometric sensor/camera	 ·  Trusted enrollment stations
	 ·	 Identity as a service	 ·  Embedded IC (e.g., PUF - physically  
							           unclonable functions)

F. 	 Forensic Analysis 
Biometrics processes employed in forensic analysis applications often require man-in-the-loop 
functionality to allow an expert examiner to review and confirm or overrule the decision made by an 
automated recognition system. This approach can also be employed during booking (i.e. enrollment) to 
provide the sensor operator with feedback on the quality of the captured images prior to entry into an 
EBTS or other data exchange format. Most forensic collections of biometrics use certified stand-alone 
sensor hardware, and matching is performed by commercial algorithms. Forensic examiners have 
expressed interest in applying biometrics pattern recognition and image processing methodologies to 
the evaluation of crime scene samples, such as latent fingerprints, video camera footage, and bullet 
striations. Recently, cellphone and body-cam technologies are being used to capture opportunistic iris 
and fingerprint images as well as face images. The implementation of rapid DNA at booking also opens 
new avenues for the use of DNA as an investigative tool.

Examples of current mission needs:

	 1.		 Lights-out Latent Matching – Currently, matching of latent fingerprint impressions collected from  
			   crime scenes are manually matched against exemplar images by certified latent print examiners.  
			   While latent print workstations have been developed to guide examiners in this process, automated  
			   matching to narrow down the pool of potential matches has not been implemented. Further work  
			   needs done in this area to improve the effectiveness of automated matching of latent to livescan or  
			   legacy 10-print fingerprint images.
	 2.	Latent fingerprint Quality Index – NIST has already established a quality index measure for  
			   contact-based and contactless fingerprints for use during the image capturing process. However,  
			   there is no well-known algorithm to estimate the quality for the latent fingerprints. There is a need  
			   to develop new algorithms to estimate the quality of latent fingerprints in order to reduce the load  
			   needed to review a large number of latent fingerprints by an examiner.
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	 (Examples of current mission needs continued)
	 3.		 Non-contact Fingerprint Interoperability – The increased capability of smartphone technology has  
			   led to improvements in the quality of image capture. Because field agents are all issued cellphones,  
			   they would like to be able to use them to capture fingerprints, rather than carry a separate stand- 
			   alone fingerprint device. However, due to photometric distortion, lack of elastic deformation,  
			   and overall input image quality (motion blur, defocus, etc.) the interoperability of contact and  
			   fingerphoto fingerprints needs improvement.
	 4.		 Database Image Management/Quality Control – There are over 15,000 state and local law  
			   enforcement agencies in the US. While the FBI provides guidelines for these agencies to enter data  
			   in the NGI system, the specific procedural details for image capture at booking is left up to the  
			   agency itself. Because of varying funding across the US, this leads to a large degree of variation  
			   in on-site training and equipment used, which can lead to quality issues associated with image  
			   capture. Automated methods of image analysis prior to and after images have been entered into  
			   law enforcement databases are needed to ensure that images of adequate quality and type are  
			   utilized in searches.
	 5.		 Flexible Addition of New Modalities – NGI was designed with modularity in mind, allowing for  
			   the addition of new modalities into the booking record as needed. Rolling these changes into the  
			   platform, however, is nontrivial. New approaches may be needed for modalities such as voice, etc.
	 6.		 Opportunistic Iris Recognition – The ubiquitous nature of high-resolution camera technology  
			   offers the capability of extracting a useable visible iris pattern from a facial or periocular image.  
			   However, most iris recognition algorithms are designed to match near infra-red (NIR) images at  
			   relatively low resolutions. New methods of cross-spectral & cross-resolution iris recognition are needed.
	 7.		 Post-Mortem Identification – Physical degradation of anatomical structures can make it difficult  
			   to collect fingerprint or iris biometrics from deceased individuals. In addition, facial recognition  
			   often fails if the eyes are closed or pupils cannot be determined in the image. New methods of  
			   biometric capture and matching are needed to overcome these challenges.
	 8. 	 Opportunistic Face Recognition – Security camera and other forensic video evidence may contain  
			   non-ideal face images (non-fontal pose, non-uniform lighting, etc.) captured at a distance. Many of  
			   the challenges of face recognition at a distance/in the wild also apply here.

G.	 Encounter-Based Intelligence Analysis
	 In some applications, eliciting the identity of an individual may become necessary based on the type of  
	 encounter. Here, the focus may be on a single individual or on multiple individuals. This would entail  
	 characterizing the nature of an encounter and then determining the identity of the individuals involved.  
	 When a matching identity is not present in the database, then a new identity profile has to be created  
	 dynamically and populated with the biometric, biographic and other descriptive attributes of the  
	 individual. Further, the database has to be periodically de-duplicated in order to merge multiple profiles  
	 pertaining to a single individual.

	 As biometric and surveillance sensors evolve, it will become necessary to update identity profiles to  
	 incorporate biometric information of an individual emerging from these novel sensors. Further, the  
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	 encounters of interest may vary with time. Effectively modeling the different types of encounters would  
	 be necessary for not only characterizing the nature of an encounter but to also detect it in real-time.  
	 The database used in these operations should allow for the grouping of identities and for developing  
	 connections between identities involved in an encounter.

	 When generating new identity profiles based on an encounter, it will be necessary to assess the quality  
	 of the biometric data being used to populate it. Poor quality data may lead to false matches or false  
	 non-matches in the future and, therefore, an automated procedure is needed to curate and ingest data  
	 into the system prior to using them. In addition, the surveillance system must embody the privacy laws  
	 of the local region thereby ensuring that biometric data is stored, accessed and transmitted in accordance  
	 to the prevailing law.

	 Artificial Intelligence is used to automatically identify patterns of adverse behavior such as recurring  
	 encounters associated with known offenders or known illegal activity.

H.	 Consumer Authentication and Access Control 
	 The use of biometrics in consumer authentication and access control is progressing at a rapid pace.  
	 It has been driven by the desire to eschew passwords and tokens (something you know or have) in  
	 favor of methods that rely on your unique identity (something you are) to enable access to personal  
	 devices, systems and physical entry points. Consumer acceptance has accelerated due, in part, to the  
	 momentum gained through the recent pandemic, making non-obtrusive authentication more appealing  
	 as a result of its increased safety and convenience.

	 Research and development continues toward the goal of secure, accurate and frictionless authentication.  
	 Despite many advancements, a fast changing world is constantly pushing the limits of biometric technologies. 

	 Examples of current mission needs:

	 1.		 Advancements for existing biometric modalities
			   · improved face and voice authentication in unconstrained environments
			   · improved recognition using video streaming and super resolution techniques
			   · touchless fingerprint and iris-at-a-distance authentication
	 2. 	 Investigation of new modalities
			   · Multi-spectral (NIR, SWIR, LWIR), millimetre (MMW) and submillimetre (SMW) waves for  
				    generating new biometric signatures
			   · Body contours
			   · Ear prints
			   · Finger/palm/wrist vein mapping
			   · Gait analysis
			   · Remote magnetoencephalographic scanners for detecting brain signatures

SECTION III  |  Application Areas
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	 3. 	 Novel multi-modal biometric strategies
			   · Novel combinations of multiple modalities
			   · Feature level fusion techniques
	 4. 	 Strategies for silent continuous authentication
			   · Continuous passive behavioral biometrics authentication
			   · Context-based analysis of behavioral data
			   · Murphy’s Law for behavioral data: “whatever data can be collected, will be collected”
	 5.		 Wearable, embedded or ingestible devices for bio-biometrics
			   · ‘Natural body signature identification’
			   · Subcutaneous implants
			   · Neural implants
	 6.		 Liveness/Presentation attack detections (aka Spoofing detection)
			   · New sensors/hardware/software for liveness detection to enable secure remote 
				    biometric authentication
	 7. 	 Cloud vs. Edge Computing Strategies for Biometric Authentication
			   · New ramifications of the Internet of Things on biometric authentication

Topics suggested to possibly include under this topic: External API to clients for services: proliferation 
of services and APIs to simplify and standardize transactions within a biometrics domain architecture 
according to message standards, Internal APIs to underlying subsystems: service based transactions and 
messaging standards.

Biometric marketplace: interoperable components within a biometrics domain architecture stimulating 
advancement of biometrics COTS products, testing harness to compare, selection of best-of-breed 
components for a particular problem, Privacy incorporated into the architecture, Architecture design: 
functional split between local device and cloud.
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Concept Families 
	 1.0	 Concept Family: Sensors and Data CollectionPage................................... page 15 
			   1.1	 Technology Concept:  Facial Imagery
			   1.2	 To be added...

	 2.0	 Concept Family: Image quality, preprocessing.......................................... page 17
			   2.1	 Technology Concept:  Cross-spectral Face Matching and Synthesis
			   2.2	 Technology Concept:  Face Pose Invariant Features and Face Frontalization
			   2.3	 Technology Concept:  Face Image Super-Resolution
			   2.4	 Technology Concept:  Face Detection

	 3.	0	Concept Family: Biometric Modality Matching.......................................... page 25
			   3.1	 Technology Concept:  Physiological Features  
			   3.2	 Technology Concept:  Soft Biometrics
			   3.3	 Technology Concept:  Behavioral Biometrics
			   3.4	 Technology Concept:  Behavior Identification

	 4.0	 Concept Family: Data Analytics and Fusion............................................... page 38
			   4.1	 Technology Concept:  Real-Time High Speed Intelligent Graph Data Analytics
			   4.2	 To be added...

	 5.	0	Concept Family: Security, Privacy, Perception.......................................... page 41
			   5.1	 Technology Concept:  Security
			   5.2	 Technology Concept:  Privacy
			   5.3	 Technology Concept:  Perception

	 6.0	 Concept Family: Fairness, Demographic Differential, Distinctiveness...... page 48
			   6.1	 Technology Concept:  Fairness
			   6.2	 Technology Concept:  Demographic Differentials in Operational Systems
			   6.1	 Technology Concept:  Distinctiveness

	 7.0	 Concept Family:  Extension to areas beyond biometrics........................... page 52
			   7.1	 Technology Concept:  Optics and Biometrics
			   7.2	 To be added…
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1.0	 Concept Family: Sensors and Data Collection

	 1.1	 Technology Concept: Facial Imagery

			   1.1.1	 Background

						      Camera technologies have forever been the foundation of facial biometric systems. Initially  
						      used primarily for mugshots, best practices, such as the ANSI NIST SAP50/51 face photo  
						      guidelines, ensure that face images used in biometric facial recognition systems are  
						      captured with uniform lighting, neutral expression, and uniform backgrounds at specified  
						      resolutions. As facial recognition applications move increasingly into unconstrained  
						      applications, camera systems need to be able to capture face images in nonuniform (or no)  
						      lighting, at long distances, at variable resolutions, and a variety of other operational challenges.  
						      In tandem with new camera technologies and uses, research datasets comprised of facial  
						      imagery captured in unconstrained conditions are needed to conduct hardware performance  
						      evaluations and develop new matching algorithms. In the case of the ever-growing application  
						      of deep learning and artificial intelligence (AI), very large face datasets with images captured  
						      under a myriad of conditions are essential for training and testing phases to be successful.

			   1.1.2	 Future Vision

						      Sensor Hardware: The future of facial biometrics will primarily involve facial capture in  
						      unconstrained conditions. Border control applications are seeking to perform face capture  
						      of large groups of individuals moving through checkpoints, either on foot or in vehicles.  
						      Smart camera systems that can track and capture faces, perhaps through the windows of  
						      moving automobiles, or perform automated person counting and frame segmentation, will be  
						      needed in these applications. Beyond facial capture, smart cameras with some level on  
						      on-board intelligence can potentially also provide encounter-based intelligence, such as  
						      determining the make and model of vehicles containing people, or the intent of individuals  
						      based on their behavior, gait, or mannerisms. Depending on the resolution and environmental  
						      conditions, these camera systems may be adapted to capture iris images at a distance as well.

One technology that could be adapted to meet this application need are foveal-vision 
cameras. Hierarchical-foveal-machine-vision (HFMV) systems [[1]] mimic the human retina 
by providing higher resolution in a region of interest, with decreased resolution in other 
areas. In these systems, resolution is essentially a dynamically allocable resource, allowing 
higher frame rates without increasing processing times. Such systems require an automated 
object tracking algorithm to 1) control a pan-tilt-zoom (PTZ) gimbal to ensure that the object 
of interest remains in the region of highest resolution (e.g. the center of the field of view/
sensor array) or 2) modify the CMOS array to adapt the resolution of a specific region within 
the camera field of view as the object of interest changes position. This technology was 
developed in the late 90s, but AI and deep learning technologies make HFMV cameras prime 
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candidates for application in current and future biometrics deployments to enable higher 
levels of encounter-based intelligence in standoff applications.

Encounter-based intelligence is not always available in daytime or other well-lit applications. 
Face capture at night using beyond-visible wavelengths ranging from near-infrared (NIR) 
to short-wave infrared (SWIR) to long-wave infrared (LWIR) has been a standard of night 
operations for many agencies, and biometrics approaches to cross-spectral face recognition 
have resulted in acceptable matching performance [[2]]. Despite recent success, further 
improvement in night-vision camera hardware is necessary to boost the resolution of 
LWIR imagers. Sub-pixel and sparsity-based detection of faces and other targets has been 
performed using visible hyperspectral imagery [[3]]. These techniques could be applied to 
LWIR-specific hyperspectral imagers [[4]] to improve the performance of LWIR sensing devices.

Far below the hardware complexity of these specialized imaging systems, CMOS cellphone 
cameras are being pressed into use by many agencies as a multi-biometric capture tool. 
Similarly, other CMOS platforms, such as mirrorless and SLR digital cameras, action cams, 
body-worn cameras, UAV/UAS-mounted systems, security cameras, and many others, are 
being used for facial biometric capture. However, just because the hardware can capture a 
face image does not mean that the resulting image is suitable for biometric recognition. To 
address the proliferation of camera hardware in modern society, government agencies are 
developing a set of hardware requirements for cameras to ensure only hardware approved 
for biometrics applications are used for facial recognition. 

Unconstrained Face Datasets: To address the dearth of facial imagery captured in 
unconstrained conditions, agencies such as the Intelligence Advanced Research Projects 
Activity (IARPA) are including face image collection in their project tasking for efforts funded 
to support the development of AI approaches to facial recognition. Face image datasets 
collected for the now-completed Janus program, IJB-A, IJB-B, and IJB-C [[5]], contain tens of 
thousands of visible, SWIR, and LWIR face images and videos in unconstrained operational 
scenarios that have been used in NIST face recognition challenges and face recognition 
vendor tests (FRVT). One major component of the recently announced IARPA Biometric 
Recognition and Identification at Altitude and Range (BRIAR) program is the collection of 
face images and video at ranges up to 1000km and from elevated platforms, including 
security cameras and aerial sensor platforms [[6]]. Funded efforts will be expected to collect 
face and whole-body imagery from at least 800 individuals to support the development of 
advanced whole-body and face recognition algorithms. While these efforts are producing a 
significant number of samples that are suitable to train AI systems to handle unconstrained 
facial imagery, data collection will be a need for the foreseeable future. Such efforts can be 
costly, as the amount manpower needed to manually annotate and categorize the ground-
truth image information can be immense. This manpower need can be met by using services 
such as Amazon Mechanical Turk, but trained biometrics practitioners may be better at 
annotation than the general public.
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2.0	 Concept Family: Image quality, preprocessing

		  2.1	 Technology Concept: Cross-spectral Face Matching and Synthesis

				    2.1.1	 Background

In recent years, there has been significant interest in Heterogeneous Face Recognition (HFR) 
[1], where the goal is to match visible facial imagery to facial imagery captured in another 
domain, such as the infrared spectrum [2, 3], polarimetric thermal [4], or millimeter wave 
[5]. Since there is a significantly less facial imagery available in these alternative domains 
compared to the visible domain, a robust cross-domain facial matching cannot easily be 
achieved.    In recent years, there has been growing research on thermal-to-visible face 
recognition [6,7,8] for night-time surveillance and low-light scenarios. Visible images contain 
rich textural and geometric details across key facial structures (i.e., mouth, eyes, and nose). 
However, in conventional thermal facial imagery, though some edges around the eyes 
and eyebrows do appear, but they suffer from significant lack of contrast compared to the 
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corresponding visible images, thus highlighting the large domain gap.

Algorithms for thermal-to-visible face recognition can be categorized as cross-spectrum 
feature-based methods, or cross-spectrum image synthesis methods. In cross-spectrum 
feature-based face recognition a thermal probe is matched against a gallery of visible 
faces corresponding to the real-world scenario, in a feature subspace. In cross-spectrum 
feature based approaches a function is learned to explicitly map the thermal features to the 
corresponding visible feature domain representation. The second category of approaches 
attempt to synthesize a visible-like face image from another modality such as NIR, thermal, 
or even polarimetric thermal input. These methods are beneficial because the synthesized 
image can be directly utilized by existing face recognition systems developed (i.e., trained) 
specifically for visible-based facial recognition. Therefore, using this approach one can 
leverage existing commercial-off-the-shelf (COTS) face recognition systems. In addition,  
the synthesized images can be used by human examiners for adjudication purposes.

				    2.1.2	 Future Vision

The MWIR or LWIR imagery is ideal for night-time and low-light scenarios. However, the 
phenomenological differences between visible and thermal imagery, and the trade-off 
between wavelength and resolution (or pixel pitch) make matching visible and thermal facial 
signatures a daunting task. Current technology, based on cross-spectrum feature-based and 
cross-spectrum image synthesis methods have achieved significant performance in NIR-to-
visible face recognition accuracy [2] and to some extent, for SWIR-to-visible face recognition 
accuracy [9]. However, MWIR-to-visible, or LWIR-to-visible face recognition systems still 
have a long way to go to achieve acceptable performance. Work is needed to narrow the 
modality gap between thermal and visible to improve the cross-spectral face recognition 
systems. One approach would be to integrate auxiliary information such as soft biometrics 
into the thermal-to-visible face recognition algorithms. For example, facial attributes (gender, 
color, ethnicity, etc.) can be used to alleviate the cross-modal gap by representing faces at 
a higher-level of abstraction. These facial attributes can in fact be automatically predicted 
[10] with high accuracy and be integrated with the Deep-Learning based face matchers 
[11]. Therefore, new seamless algorithms are needed to fuse soft biometrics with facial 
features for cross-spectral matching. The current cross-spectral databases are very small 
and overfitting the learning models with these small databases is a common issue. Large 
cross-spectral face databases are needed for experimentation with detailed facial attribute 
annotations. Another auxiliary information is the polarimetric measurement from the 
thermal face images. Polarimetric thermal imagery is represented by Stokes parameters: 
S0, S1, S2, where S0 is conventional thermal image, S1 captures the differences between 
the 0 degree and 90-degree polarization states, and S2 captures the difference between the 
45 degree and 135-degree polarization states.  It is possible to expand the capabilities of 
LWIR polarimetric imaging by generating three-dimensional (3D) images of human faces 
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reconstructed from single Stokes-vector images [12]. The reconstructed 3D-face can then be 
used to perform matching against a 3D-facial gallery.
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		  2.2	 Technology Concept: Face Pose Invariant Features and Face Frontalization 

				    2.2.1	 Background 
							       Unconstrained face recognition at extreme pose is an important and a challenging problem.  
							       The existing methods that address this pose problem can be generally categorized into two  
							       major categories. The first category aims to obtain pose-invariant embeddings [1, 2, 3].  
							       The other aims to normalize (frontalization) face images [4, 5, 6, 7] to identity-preserved  
							       frontal views (as a preprocessing step), which can be directly used by any off-the-shelf face  
							       recognition systems without the knowledge of the recognition models. For the first category,  
							       deep metric learning [1] is a common way to achieve pose-invariant embeddings in a latent  
							       subspace. Due to the imbalanced distributions that characterize a long tail distribution of  
							       large pose faces, it is often difficult to achieve ideal pose-invariant embeddings across large  
							       pose variations. The second category is known as face frontalization, which resorts to  
							       computer graphics or deep learning to rotate profile faces to frontal views. Recently, deep  
							       learning-based methods have shown impressive capability on face frontalization [4, 5, 6, 7].  
							       Early efforts [8] adopt the mean square loss to learn a deep regression model from paired  
							       training data. Recent methods have been proposed with novel network architectures [9, 10]  
							       or learning objectives [6, 11, 12]. Another interesting approach is to map the 2D face onto a  
							       canonical 3D model, this line of research date back to the 3D Morphable Model (3DMM) [13],  
							       which models both the shape and appearance as PCA spaces.

				    2.2.2	 Future Vision

A challenge that persists is that of extreme poses – face-based models tend to breakdown 
on samples of faces that are viewed at extreme angles, pitches, and yaws. Furthermore, 
another major challenge is to design pose-correction algorithms or pose-invariant 
embeddings in unconstrained environments where there are more complex face variations, 
e.g., lighting, head pose, expression, self-occlusion in real-world scenarios.  

Face normalization and embedding in the unconstraint environment. Current existing face 
normalization or embeddings techniques are developed under constrained environment 
and are based on supervised learning framework with the assumption of paired training 
data.  More advanced techniques are needed to address pose correction and estimation 
for unconstrained environment with faces captured from surveillance cameras at distance. 
Developing algorithms that jointly address pose estimation, correction, and super-resolution 
is the next step in advancing face recognition systems. Extending these algorithms with 
to Multiview cameras [14, 15] or multiple pose-specific [3] methods are interesting line of 
research. Furthermore, combining concepts from both 3DMM and deep face recognition 
CNNs [5] to achieve high-quality and identity-preserving frontalization, we believe these 
approaches deserve further research.

Use of Multi-pose face normalization and embedding. Multi-view [14, 15] or multiple pose-
specific [3, 16] methods are also used to obtain pose invariance features.  The reason behind 
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using multi-pose face frontalization is that it can generate a better fronatlized face than the 
single view frontalization algorithms.  For example, a multi-pose embedding technique can 
be used to aggregate all the off angle pose views into a robust feature embedding that can 
be used to reconstruct a single frontal face. The pros and cons of these multi-pose face 
fronatization approaches deserve further research.

Head pose estimation for extreme roll, pitch and yaw.  Head pose is a 3D vector containing 
the angles of yaw, pitch, and roll. Estimating the head pose from an image essentially 
requires learning a mapping between 2D and 3D spaces. Methods utilizing more modalities 
such as 3D information in depth images or temporal information in video sequences are 
to be investigated. Algorithms still need to be developed that can estimate and correct for 
extreme yaw and pitch angles using faces at a very low-resolution (faces at a distance). 
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		  2.3	 Technology Concept: Face Image Super-resolution

				    2.3.1	 Background

Face super-resolution (FSR), a.k.a. face hallucination, refers to a class of computational 
methods for enhancing the spatial resolution of face images. FSR technology is deemed to 
a low-cost alternative to more expensive solution such as optical zoom. At the intersection 
of computational imaging and computer vision, FSR has found to be a valuable tool to facial 
biometric systems especially for extreme situations such as at a distance and from an 
altitude. Existing FSR technology can be classified into two categories: model-based and 
learning-based. Model-based FSR [1]-[3] include example-based [7], sparse coding based 
[8], and landmark-based [9]. For a review of face hallucination and generalized FSR, please 
refer to [1]-[3]. Learning-based FSR methods are represented by FSRNet [4] and its wavelet 
extension [5] as well as FSRGAN [4] and its unsupervised extension [6]. Earlier works on FSR 
have only considered the magnification ratio of ×2, ×3, and ×4. Recent trend in FSR has taken 
larger magnification ratio ×8 and beyond into account.

2.3.2 Future Vision

FSR in the wild. The majority of existing FSR is developed under the framework of supervised 
learning based on the assumption of paired training data. The simulated low-resolution 
(SLR) image is often obtained by artificially down-samplingdownsampling a high-resolution 
image. Such over-simplified assumption with degradation modeling does not match the 
characteristics of real low-resolution (RLR) images acquired in the real world. For example, 
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face detection on RLR images would have substantially less accurate bounding box location 
compared to downs-sampled high-resolution images. Such simulated-to-real gap has 
remained one of the long-standing open problems in face biometrics system including 
face recognition and FSR. How to extend FSR technology from supervised to unsupervised 
deserves systematic study. Some existing work (e.g., [6]) has proposed to use a generative 
adversarial network (GAN) to directly learn the degradation model associated with RLR 
images but with limited success. Our recent work [10] has leveraged the novel architecture 
of cycle-consistent GAN (CycleGAN) to FSR and demonstrated improved robustness when 
applied to RLR dataset. StyleGAN-based face image synthesis has also inspired the research 
into FSR techniques based on the extrapolation in the latent space of W+. 

FSR and Face Recognition. Most FSR works aim to minimize some distance metrics defined 
with respect to the high-resolution images. However, the superresolved pixels might be just 
for a pleasure of eyes, but not more precise description of the identity information. Prior 
studies show that low-level vision tasks should be designed or trained end-to-end with high-
level recognition tasks in order to benefit recognition [11]. With this mind, one may either 
bring the recognition loss into the FSR pipeline [13], or directly learn identity representations 
from RLR [12] where FSR could be an implicit module. The pros and cons of these 
approaches deserve future research.  

Extreme FSR. Face recognition at long range (e.g., from hundreds to a thousand meters) 
or high altitude (e.g., from aerial platforms such as UAVs) has received increasingly 
more attention in recent years. IARPA has just initiated a new program named Biometric 
Recognition and Identification at Altitude and Range (BRIAR) to support this line of research. 
One of the primary technical challenges is the extreme low resolution (LR) of face imagery 
(face width of ~20 pixels) - it has been reported that the smallest spatial resolution for a 
human operator’s discerning the facial identity information is around 18×24 pixels. Despite 
rapid advances in face recognition and super-resolution (SR), reliable extraction of face 
identity information from extreme LR face imagery such as Widerface (http://shuoyang1213.
me/WIDERFACE/ ) has remained beyond the capability of current technologies. Recent 
advances in long-range and high-altitude biometric systems have renewed the interest in 
extreme face superresolution (FSR) - i.e., superresolving the resolution of face images by 
an extreme scaling factor (often larger than ×8). Extreme FSR in the wild has to address 
the challenges of preserving both face identity [13] and image quality while dealing with 
unknown degradation factors.
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3.0	 Biometric Modality Matching

		  Introduction

At the most abstract level, matching in pattern recognition is the process of measuring a degree of 
similarity between two patterns. The patterns of interest in this concept family are those that are 
specifically related to identity and/or the characterization of behavior for the purpose of detecting 
an action or inferring motive or intent. In the former, distinctive and measurable characteristics of 
individuals are used to identify or verify identity by comparing them to measurements stored previously 
for an individual. In the latter, distinctive and measurable characteristics of behavior are used to detect 
or classify a behavior by comparing the characteristics to those of a model for a targeted behavior of 
interest. Although technologies developed in this area can also be applied to animals, the primary focus 
of this roadmap will be applications related to human beings.

There are many general concepts related to pattern recognition and machine learning that form the 
backdrop for the technology used in biometric matching regardless of modality. Advancements in 
these areas have been critical to the current success and proliferation of biometrics in authentication 
and identification applications and will continue to have an impact on their development and adoption 
in society. For example, the success of matching is strongly correlated with the quality of the input data 
representation, which itself is affected by many factors. This implies a strong relationship between 
advancements in matching and advancements in all aspects of biometric sample characterization 
including, but not limited to: biometric sample quality, segmentation, feature extraction, classification 
and fusion. Many of these are touched on in other concept families; nevertheless, there are many 
overlapping research areas relevant to advancements in biometric modality matching.

		  3.1	 Technology Concept: Physiological Biometrics

				    3.1.1	 Background

Physiological biometrics refer to the use of physical measurements of the human body 
for the purpose of uniquely identifying or authenticating an individual. A reasonably 
comprehensive, but not exhaustive list is the following:

· Face		  · Fingerprint
· Iris			   · Palm (Writer’s Palm, Lower Palm)
· Hand Geometry	 · Ear Print
· Lips			  · Footprint
· Periocular	 · Finger/Palm/Wrist Vein Mapping
· Finger-Knuckle Print	 · Retina

				    3.1.2	 Future Vision

Major recent advancements have been made in face as a result of the confluence of three 
significant developments: advances in hardware computation, development of deep neural 
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network machine learning architectures and an explosion of available digital data. Large 
datasets for iris and fingerprints are also generally available, making it likely that deep learning 
approaches may result in advancement in iris and fingerprint matching technology as well, 
although further research is required to determine the upper limits of that potential [1, 2, 3]. 
Further advancements in all of these biometrics are expected as technology advances to 
harness the full potential of these developments. Numerous challenges still exist[4].

Procurement of large datasets is a significant issue for making advancements in these 
biometrics and others. More research is required into the potential of synthetic data 
generation to augment smaller datasets for training purposes [5, 6, 7]. Synthetic data 
generators have been found to be useful for fingerprint algorithm development and are 
being extended to face and iris [8, 9, 10]. Viable results have been obtained for segmentation, 
detection and landmark location, but this approach has yet to be proven effective for 
recognition training. Improved methods for data augmentation are also necessary to 
leverage the use of deep neural networks for biometrics with limited training data [11].

Benchmark datasets have been limited to face, iris and fingerprint, but their existence 
has aided in the advancement of commercial algorithms for those biometrics. Equivalent 
training and benchmark datasets would be valuable for other biometrics, specifically palm 
and multi-spectral face. Phone sensors using IR and NIR are coming online but progress will 
be hampered by limited training and benchmark data. Overall, methods to more efficiently 
use the little data that is available are necessary [12]. Potential variations on these are 
possible by studying either the passive detection or active reflection of various forms of 
radiation to obtain additional distinctive biometric representations based on physiological 
biometrics that could be useful for matching.

Most current applications of deep learning to biometrics concentrate on the training of 
feature extractors. As hardware continues to accelerate neural network processing, research 
into deep learning networks that include matching may provide additional boosts in 
matching accuracy.

There is a need for practical, conceptual frameworks that can accommodate the various 
requirements for matching engines. For example, how does one balance the need to be able 
to simultaneously discriminate between face images for unrelated individuals and family 
members or twins? How do differing performance criteria affect the design, deployment 
and integration of matching technologies in diverse operational environments? Can/should 
a single matching algorithm be expected to work optimally on biometric data from multiple 
image quality domains, or is there a need to uniquely address source biometric sample 
quality differences?

Cross-domain transfer learning [13, 14, 15, 16] is an important area for advancement, 
relevant across a range of domain differences, such as:
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1.	 Devices
Training and testing is often limited to a small number of devices. Transfer learning can 
be useful to generalize matching algorithms to devices not previously seen, but more 
research needs to be done. [17]

2.	 Spectral modalities
Due to lack of training data, research into cross-spectral domain matching is of 
particular importance in cases where different types of radiation are used to generate or 
detect different biometric representations from the same physiological trait, e.g. infrared, 
polarimetric thermal, millimeter wave or depth representations for faces. There is a need 
to leverage transfer learning to enable robust cross-domain matching without requiring 
large domain specific training data.

3.	 Biometric traits
Transfer learning has been used in a limited way to adapt object recognition neural 
networks to face recognition. The question is, can transfer learning be used to take 
advantage of these networks to make progress in others? The diverse nature of 
physiological biometrics may require the development of more specialized deep learning 
nets tailored to them to enable transfer learning to work more effectively. For example, 
new deep learning architectures may be required to deal optimally with certain biometric 
features i.e. the generic object detection networks may not be sufficiently targeted to the 
features needed to accurately match all biometrics. On the other hand, transfer learning 
may be more effective for networks designed for fingerprints but applied to iris (or vice 
versa), than networks originally designed for face.

Our understanding of the interaction between biometric sample quality and matching 
performance is limited primarily due to the ill-posed nature of the perceived problems 
[18, 19]. Matching involves a complex interaction between the biometric sample quality 
distribution of the gallery, the quality of the probe, the uniqueness of the gallery sample, 
the gallery size, and the inherent bias associated with the feature extraction and 
matching algorithms. A methodical and consistent approach to characterizing the effect 
of biometric sample quality on the matching process is still lacking, but is an active area 
of research [20, 21, 22].

Increased sensor resolution and decreased size/expense, as well as increased data 
transfer speeds and computing power will soon make practical the simultaneous 
acquisition of multiple biometrics (e.g. face/iris, periocular/iris, fingerprint/DNA, fingerprint/
hand geometry, fingerprint/vein, retina/iris). As ubiquitous as the smart phone has 
become, there is no reason to think that the accessibility, diversity and use of sensors will 
not increase as well. Progress in smartphone acquisition of biometrics is accelerating 
but more research is required to ensure interoperability. This will likely require more 
sophisticated methods of fusion both at the score and/or feature level, along with the 
development of associated matchers [23, 24].
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Multiple templates and template update can be powerful methods for improving the 
power of matching systems [25, 26]. More research is required into the tradeoffs 
between the operational deployment of frame selection algorithms, storage of multiple 
enrollment biometrics, fusion of enrollment biometrics and the incorporation of 
biometric sample quality into match strategies and decisions.

Finally, the ability to learn from a single instance is a powerful human skill, and one-shot 
learning algorithms try to mimic this special capability. Current deep learning algorithms 
require a significant number of examples to learn the multiple levels of representation 
necessary to recognize other individuals. Transfer learning can mitigate this to some degree. 
However, advances in one-shot learning that combine the two approaches could potentially 
yield powerful learning algorithms for many biometrics for which data is scarce [27].

			   Keywords
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					     · fingerprint           · iris                · biometric sample quality  · matching                  · one-shot
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3.2	 Technology Concept: Soft Biometrics

			   3.2.1	 Background

Soft biometrics are ancillary information such as facial measurements, color of the skin, 
height, gender, and ethnicity, which can be integrated to improve the overall performance 
of a primary biometric system. There are three categories of soft biometric modalities: 
global (gender, age, ethnicity), face (skin color, nose length, eye size, lip thickness), and body 
(arm length, chest width, height), which are considered more permanent modalities than 
attributes such as glasses and clothing [5]. Soft biometrics often lack the distinctiveness and 
permanence to sufficiently differentiate two individuals [8, 10]. Nonetheless, Soft biometrics 
as an alternative to traditional biometrics are emerging due to their independence, non-
intrusiveness, semantics, and availability [5].

The application of soft biometrics through anthropometric and morphological 
measurements (head length, head breadth, length of middle finger, length of the left foot, 
and length of the cubit) dates back to Alphonse Bertillon’s system in the 19th century that 
police could use to identify criminals via physical measurements, photography (mug-
shot), and record-keeping [3]. The Bertillon system was later replaced by hard biometrics 
(fingerprint) due to the challenge in reliably identifying an individual via software biometrics. 
Soft biometrics can be used to identify individuals in the so-called hidden population (people 
who seek to remain hidden) or when biometric scanners are unavailable [6]. Soft biometrics 
can also be used to narrow down the search scope in the whole dataset [1].  However, due to 
lack of distinctiveness and permanence, soft biometrics were not trusted capable of being 
reliably used for user identification. Instead, they were integrated to enhance performance 
of a primary biometric system. For example, fingerprint as a primary biometric modality is 
combined with ancillary information of gender, ethnicity, and height resulting in a substantial 
improvement in performances [7, 8]. On the other hand, soft biometrics are recognized to 
be non-intrusive, independent, semantic, and easily available. Therefore, recent research 
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has emerged on developing soft biometric based standalone recognition systems. [9, 4] 
Soft biometrics can also help overcome disadvantages of a primary biometric, including 
acceptability (if users are not willing to provide biometric information such as face images), 
usability (difficult to interact), and circumvention (system resistant to spoofing). [1]

3.2.2	 Future Vision

There are a few open challenges and recommendations for developing standalone soft 
trait-based recognition systems. Design and development of benchmark datasets – 
datasets available are used alone or in concatenation for user-recognition or evaluation 
of a soft biometric system. None of these datasets cover all the physical and behavioral 
modalities of humans. Mostly face and body are the primary focus. Quantitative annotations 
– annotations of the dataset are the next step after collection. The qualitative methods 
of annotation are good for short-term tracking or feature-based retrieval on a small 
dataset. But, for long-term tracking in an unconstrained environment, we need quantitative 
annotations. These include geometric or anthropometric measurements of soft traits. 
Feature selection – selecting features that are highly significant for recognition and 
retrieval can be challenging. Automated estimation of soft biometrics – any chosen soft 
trait to be used in recognition systems must pass through four factors, namely, feature 
correlation, permanence score, discrimination power, and attribute distance. Fusion – 
most of commonly used fusion techniques in standalone soft biometric-based recognition 
systems are feature-level (based on permanence and discrimination power) and modality 
level (based on the selected soft traits). Other challenges include recording environment, 
lighting conditions, random gaps between sessions, and lack of information about user 
demographics. [5]

			   Keywords
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		  3.3 Technology Concept: Behavioral Biometrics

				    3.3.1	 Background

Behavioral biometrics is the field of study that deals with the measure of uniquely identifiable  
patterns in human activities. These patterns of behavior are usually specific to the user and 
can be used for authentication, such as the rhythm with which a user types on his computer 
keyboard or mobile phone, the angle at which the phone is held when in use or the way a 
user walks in slow, .normal and fast paces. In contrast, physiological biometrics involves 
the innate human characteristics such as face, fingerprints or iris patterns. Behavioral 
biometrics is a promising .solution in financial institutions, businesses, government facilities 
and retail points for preventing account takeovers and fraud in a frictionless manner.

There are a plethora of behavioral biometric modalities but not all have been studied 
adequately. The metrics used for recording performances include, equal error rate (EER), 
area under the curve (AUC), half total error rate (HTER), false accept rate (FRR), False reject 
rate (FAR) and accuracy.  Below are some modalities that have been relatively well studied.

1.	 Keystrokes
Keystroke dynamics identifies users based on their typing rhythms and requires no 
extra hardware other than the keyboard readily available on a computer or smartphone. 
Furthermore, it is passive and non-intrusive. That is, it can run in the background in a 
frictionless manner without interfering with the user’s activities. Keystroke dynamics 
can be classified into fixed-text and free-text. When users are constrained to type a 
predefined text, such as passwords, it is known as fixed-text, while free-text refers to 

SECTION IV  |  Concept Families: Biometric Modality Matching



CITeR Technology Roadmap 2022 | 33

cases when users are allowed to type freely without restriction on what, when and how to 
type (e.g., writing an article on a topic of their interest). Sometimes, keystroke dynamics 
can be somewhere between fixed-text and free-text. This is known as semi-fixed text. The 
state-of-the-art for desktop fixed-text, semi-fixed-text and free-text are 9.6% [1], 0% [6] and 
2.2% [7] EER respectively, while for mobile semi-fixed-text and free-text are 2.26% [6] and 
9.2% [7] EER.

2.   Mouse Dynamics
Mouse dynamics is the process of identifying users based on their mouse operating 
behaviors. It is less intrusive and requires no special or additional hardware to capture 
mouse behavioral data. Mouse dynamics have two applications which are static mouse 
authentication and continuous mouse authentication. The former is when the mouse 
operations are used only once at a particular moment, as the case of user login. On the 
other hand, continuous mouse authentication continuously verifies the user’s identity 
throughout the user’s session. The state-of-the-art performance for continuous mouse 
authentication varies from 0.58% - 2.94% FAR and 0.12% - 2.28% FRR depending on the 
number of mouse actions used [8].

3.  	Mobile Touch Gestures and Swipes
The touch gestures are prescribed shapes drawn on the mobile devices touch screen 
comprising of single or multiple strokes where each stroke is a series of successive 
numerical coordinates. Usable features of touch gestures include touch direction and 
duration, velocity and acceleration of movement. A study [2] produced 95.85% accuracy 
with 45 participants. Swipe is one of the dominant user actions on the touchscreen when 
people interact with their mobile devices. Like every other behavioral biometric modality, 
factors such as emotional state or injury can affect the accuracy of swipe. The state-of-
the-art has performance ranging from 80% to 96% AUC [3].

							       4.     Walking Gait
This is based on the measurement and analysis of the way an individual walks or runs 
by using the acceleration signals produced by the gait recording device such as mobile 
phone. Smart phones have embedded sensors like accelerometer, gyroscope and 
magnetometer which can effectively measure gait characteristics with no additional 
cost. Factors such as device orientation change, uneven ground, possible injuries, 
fatigue or footwear can affect the accuracy of walking gait when used for authentication 
[4]. Performance for gait varies based on where the sensor is placed (waist, left-side, 
front-side, pocket etc.), the type of sensor used (camera, smartwatch, smartphone, floor 
sensor, accelerometer etc.) and the number of users in the study. The state-of-the-art 
performance ranges from 0.17% to 2.27% EER for wearable sensors and 1.23 to 4.07% 
EER for smartphone.
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							       5.     Speaker Recognition
Speaker recognition is the identification of a person from characteristics of voices. It 
is used to answer the question “Who is speaking?”.  It is one of the most convenient 
and accessible behavioral biometric modalities due to the abundance of devices 
equipped with a microphone, such as smartphones. Applications of speaker 
recognition include forensics, surveillance, user authentication etc. Identification/
authentication performance may be affected by the acoustic mismatch induced by 
varied environments and devices of the same speaker.  The state-of-the-art performance 
is 0.9% EER for normal-normal speech, and 17.8% - 27.3% EER for normal-whispered 
speech [5]. Note that speaker recognition is different from speech recognition, which is 
the ability to recognize spoken words or commands from speech.

3.3.2	 Future Vision

Behavioral biometrics lacks benchmark datasets to compare algorithms and generalize 
performance claims that can be trusted. Many studies are impossible to replicate as 
researchers have reported performances based on their private datasets. In addition to the 
lack of benchmark datasets, the number of users/participants involved in each study is 
relatively small to generalize.

Keywords 
· Behavioral biometrics      · Implicit authentication..          · Continuous authentication  
· Usability                              · Keystroke dynamics            · Mouse dynamics  
· Speaker recognition         · Mobile touch gestures         · Mobile swipes 
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3.4 Technology Concept: Behavior Identification

				    3.4.1	 Background

Modality matching in the context of behavior identification in this document will be limited to 
classification of human behavior that depends on an analysis of individual behavior for the 
purpose of determining intent. The following is a non-exhaustive list of some examples:

1.  Micro-expressions
2.   Emotion detection
3.   Body expression recognition
4.   Human activity detection

Although somewhat tangential to biometrics, these patterns are distinctly human and can be 
used to characterize subgroups of individuals by behavior, analogous to how soft biometrics 
can be used to characterize subgroups of individuals based on physical characteristics. Like 
soft biometrics, they may have components to them that may be individually distinctive, but 
not independently sufficient for identification.

For example, video systems can view individuals before attacks and collect information on 
individuals who frequent potential attack sites, providing a baseline for identifying individuals 
engaged in pre-execution activities. Fig. 1 below shows the relationships between various 
components of a threat monitoring system that combines information from multiple levels 
of analysis of human behavior, with various degrees of individuation [1].
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3.4.2	 Future Vision

Depending on the application, a potentially serious problem arising from the use of this 
technology is the extremely high false detection rate. For example, in threat detection 
scenarios, there is a need for imminent behavior threat detection, but high false detection 
rates can not only severely inconvenience the innocent but can also divert and distract 
scarce and valuable resources that could be better used elsewhere. Improving detection 
but at the same time determining optimal methods to combine such information without 
incurring such errors is critical to this progress.

Although normal facial expression recognition is now considered a well-established field 
with accuracies exceeding 90%, automatic recognition of micro-expressions in contrast, 
is still relatively new with many challenges. One of the challenges is detecting the micro-
expression of a person accurately from a video sequence. Micro-expressions are typically 
very subtle and of short duration, making detection of micro-expressions a difficult 
task. Detection is even more difficult when the video clip consists of spontaneous facial 
expressions and unrelated facial movements, e.g. eye-blinking, opening and closing of 
mouth, etc. Additional challenges include inadequate features for recognizing micro-
expressions due to their low differential intensity. Although deep learning methods would 
be expected to be particularly amenable to solving this problem, lack of data hampers 
significant advancement. Annotated datasets exist only for several hundreds of subjects [2]. 
In contrast to face recognition, the dependence on facial features makes 3D synthetic face 
generation combined with computer animation a viable alternative for supplying training 
data, but more research is required.

From another perspective, as data on human behaviors are increasingly digitized, the 
volume of potentially analyzable data increases accordingly, and manual annotation and 
analysis becomes impractical or impossible. Unsupervised methods for training may be 
necessary for future advancement of this technology [3, 4].

Emotion recognition algorithms that fuse multiple parameters seem to perform much 
better than ones that infer emotional state simply from facial expressions alone. Of course, 
checkpoints or other security environments are dynamic locations where it is difficult to capture 
high-resolution video, but improvements in surveillance technologies will inevitably yield that type 
of information, making such data fusion more feasible. One of the most frustrating deficiencies 
in the labeling of data associated with emotion and body expression research is the lack of 
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consistency in the taxonomy used for naming various states. This results in considerable 
fragmentation of the data and makes transfer learning techniques difficult [5].

It has been noted by many researchers that there is considerable complementarity in different 
modalities. Unfortunately, research in multimodal emotion recognition remains rather scarce 
and simplistic. The little research that exists mostly focuses on simple fusion techniques using 
shallow representations of the body and face or body and speech. Even though all methods report 
important improvements over unimodal equivalents, this potential remains largely unexplored [5].

Observation of indicators representative of mental states holds promise for the detection 
of deception and other behaviors. For example, polygraph testing, and other measures 
of peripheral nervous system response such as heart rate, heart beat, blood pressure, 
electroencephalograms (EEGs), vocal stress, and facial expression and micro-expression 
analysis have the potential for detecting deception and/or hostile intent. Two primary 
problems with using physiological indicators are non-specificity (the indicators may 
stem from many causes some of which may be benign) and individual differences (the 
observables that indicate attack or deception differ markedly across individuals, which may 
require matching against individual-centered baselines)[6, 7].

New technologies using non-contact electric field sensors also allow some physiological 
features to be observed without physical contact, sometimes at some distance, and 
sometimes covertly or surreptitiously, as with using heat-sensitive cameras to detect 
capillary dilation and blood flow to the face and head. There is some evidence of improving 
detection of deception or imminent action by an individual if baseline information is available 
for that specific individual ahead of time.
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Concept Family 4.0: Data Analytics and Fusion

		  4.1 Technology Concept: Real-Time High Speed Intelligent Graph Data Analytics

				    4.1.1 	Background

Applications of graph theory and social networking are useful for understanding the 
texture and context of interactions in the social networks of individuals who are potential 
adversaries, and possibly for predicting their behavior. Col Glen Voeltz (1), in his monograph 
on “The Rise of IWar” outlines in detail the growing flood of both classified and open source 
information available to the intelligence community that is amenable to social network 
(read: graph) analysis and identification of potential adversaries.  Advancements in these 
areas will most likely be associated with “Big Data” technologies, because the volume, the 
variety, and the velocity of the data requires large, distributed databases and streaming data 
technologies.  Voeltz points out the importance of biometrics in these advancements.  It 
has become clear that the commercial advanced analytics in the spheres of both machine 
learning and deep learning, combined with the new graph analytics that have come to 
characterize customer behavior analytics are uniquely adaptable and parallel to the new 
requirements in Identity Warfare (IWar) and intelligence fusion analysis, and track well with 
the new biometrics capture and correlation capabilities to include biometric biographical 
data as well (2).

4.1.2	 Future Vision

Within an intelligence-based knowledge graph system as described in Figure 1, multi-modal 
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encounter-based biometric data stores serve as data sources providing information on 
encounter locations and times as well as specific communications linked to identities. 
Unconstrained face and voice biometric data collection provide significant value.

			   				     Figure 1. Components of Knowledge Graph Systems

Current Knowledge Graph solutions, generically, can use a variety of structural components 
because they are multi-modal in terms of the origin and the structure of the data they 
use for their construction. The most common components are numerous data stores, 
including but not limited to document stores, relational stores, NoSQL stores, and other big 
data/Hadoop stores which can hold a variety of data types. These stores generally have a 
translation layer to a graph store (itself considered a NoSQL database). This graph store 
can then be informed by a semantic/ontological layer which defines semantic hierarchies, 
and which itself is defined by taxonomies built from web systems. These layers can often 
be augmented or combined with Lucene/Solr/Elastisearch layers which index and provide 
faceted search capabilities. The combination of these ontologies linked to the structures of 
the underlying graph data makes the construction of derived knowledge graphs possible, as 
depicted in Figure 1.

The translation layer between the different stores each require different and extensive 
preprocessing, and in the more advanced Knowledge Graph systems, there is extensive 
Natural Language Processing (NLP) using machine learning- for example, deep learning 
for classification using Convolution or Recursive Neural Networks (CNNs and RNNs) and 
machine learning techniques such as LDA (Latent Dirichlet Allocation) for topic analysis.  
This NLP could also involve the construction of Word2Vec, GloVe, LDA2vec, and other even 
more advanced pre-analyzed semantic spaces using a language corpus specific to the 
subject area (3,4).
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In order to implement solutions to solve very large graph problems many coinciding 
problems arise.  It is clear that for most large knowledge graph systems, the main problem 
comes before the graph data. The system needs to be:

·	 Near real-time (refreshed often and from various stores)
·	 High throughput (to transfer large amounts of data between systems)
·	 Store large quantities of information (billions of rows yielding billions of nodes and edges)
·	 Data will be in various structured and unstructured formats (text, images, key/pair data)

This means an operational Big Data system with a full streaming and publish and subscribe 
layer is required. There are several different tiers of big data systems, each requiring 
a different architecture. Operational systems are built for speed and volume of data 
throughput and speed of the data stores and on-board data processing systems to stream 
data in from external sources and between system components.

Based on the current state of the art, three areas for future work are identified.

1.	Current technologies require network fusion to be done iteratively for different data sources, 
			 with each being added through a different transformation and then iteratively assimilated 	  
			 into a graph database. Transformations are needed which allow data to be associated 	  
			 across data sources through data pipe integration, before it enters the graph database, 		
			 with an objective to speed graph integration.

2. Current technologies link graphs with knowledge hierarchies derived and set in RDF and  
			 OWL frameworks, which are difficult to generate and maintain, and very difficult to modify  
			 with rapidly and continuously streaming data.  Work is needed to replace these knowledge  
			 hierarchies with knowledge models generated for NLP hierarchical topic modelling,  
			 with an objective to build a more tightly integrated and quickly adaptable framework for  
			 providing appropriate knowledge frameworks to knowledge graphs. The object will be to  
			 find adaptable analytics frameworks that simplify and accelerate integration and building 	  
			 of semantic knowledge bases, using cutting edge NLP technologies.

3. Current technologies leave large gaps where solving the last mile of the problem, they  
			 assume that all the hard work of integration and data preparation and delivery is already  
			 accomplished. Work is needed to evaluate the most advanced and appropriate Big Data  
			 streaming models with intermediate model processing and integration of machine  
			 learning have to offer to solve the hard issues leading up to that last mile. This work will  
			 examine the competing Big Data frameworks and newest options, like in-stream  
			 processing and analytics with automated semantic hierarchy production and update.
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5.0 	Concept Family:  Security, Privacy, Perception

		  5.1 Technology Concept: Security

				    5.1.1 Background

Cognitive security concerns protecting our cognitive process from deliberated attacks. Media 
forgeries, including DeepFakes, can be considered as a way to hack our biological perceptual 
system and decision making process. Thus they pose risks to cognitive security with a rippling 
effect to the overall security of biometric systems. In addition, synthesized impersonating media 
(images of faces, irises, finger prints, voices, and videos) can be exploited to gain access to 
biometric systems in the form of a rebroadcast attack. There are overlappings between multimedia 
forensics and likeness detection.

The current efforts in Multimedia Forensics heavily tilt towards detection, which formulate the 
problem as a binary classification between real and fake media. The state-of-the-art detection 
methods are based on DNN classifiers trained on large datasets. Although these methods 
have demonstrated promising performance on various benchmark datasets, detection alone is 
not adequate to combat DeepFakes [1].

·	 Detection methods only operate post mortem after DeepFakes emerge and cause damages.

·	 Anti-forensic attacks can deliberately mislead the detection method to make classification  
		 errors by hiding traces of DeepFakes, especially those based on deep neural networks.

·	 Detection methods usually do not provide direct evidence of DeepFakes beyond the Yes/ 
	 No answer.

· 	Little information is revealed about the generation process of DeepFakes using detection  
	 methods.
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·	 The current detection methods are inefficient in running time, and cannot be used for real- 
	 time detection for applications such as liveness detection.

Figure 1. Various types of media forgeries that pose threats to the cognitive security and biometric 

systems. (Top): GAN synthesized faces. (Middle) Face-swaps. (Bottom) Lip-syncing.

5.1.2	 Future Vision

There is no doubt that we are going to see more media forgeries and DeepFakes in the 
coming years, with better visual qualities, cheaper and easier to create, and taking new 
forms.  Therefore the detection and other counter-technology need to catch up with the pace. 
Given the limitations of passive detection methods, there are needs to develop more active 
approaches. Instead of waiting for the DeepFakes generated and then identifying them using 
detectors, One such direction is  a more active approach by adding impercep- tible traces 
to the would-be training data. Such traces should be learned by the DeepFake generation 
models trained using the tainted data, and can be extracted later from the DeepFakes created 
using the tainted model. The traces provide definite evidence of synthesis [2,3]. The other 
direction is to develop a proactive approach to obstruct DeepFake generation by sabotaging 
the training process. This is achieved by poisoning the would-be training data to disrupt 
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the critical pre-processing steps including face detection and landmark extraction. The 
poisoned data will lead to reduced efficiency and low quality (occasionally total failure) of the 
synthesized DeepFakes. The poisoned data can attack the models directly [4] or important 
pre-processing steps in model training [5]. 

CITeR is uniquely situated to combine multimedia forensic research with biometric research, and the 
cross-pollination between the two areas is expected to lead to new effective methods.  
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5.2	  Technology Concept : Privacy

				    5.2.1  Background

The privacy concerns over many biometrics stem from the fact that biometric templates 
in their raw format, such as fingerprints, iris, and face, are permanent, unique identifiers 
that can be stolen and exploited by adversaries to launch spoof or replay attacks, or used 
to cross-match the individuals among multiple databases without informed consent 
(function creep), thus violating data privacy protection laws. [1] The current practice of 
using cryptographic encryption/decryption to secure the raw biometric templates is limited 
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in that stolen cryptographic keys may potentially lead to large-scale, catastrophic data and 
privacy breaches. One way to address this limitation is to store the encrypted template 
and decryption key in a secure environment that the owner directly possesses, such as a 
smart card or a secure chip, but its applicability is limited to verification (1:1) rather than 
identification (1:n). In addition, two broad categories of template protection algorithms 
(feature transformation vs biometric cryptosystems) have been proposed in the literature to 
achieve the requirements of noninvertibility, revocability, and non-linkability for the generated 
templates but without compromising recognition performance. However, significant research 
advances are needed before practical acceptance of such algorithms, including design 
of invariant biometric representations with high entropy and guaranteed performance, 
independent benchmarking, and practical solutions ensuring revocability and nonlinkability of 
protected templates. [2]

Figure 1. Architecture of biometric systems integrated with template protection.

5.2.2	Future Vision

Self sovereign identity [3] can become a major design paradigm that offers strong privacy 
protection, especially in verification-based scenarios, such as access control and account-
based online financial transactions. In this regard, the FIDO standard can be promising to 
enjoy widespread industry adoption.

Secure biometric data sharing will continue to be an important design concern for 
identification-based sceneriors, such as border control, covert surveillance, and forensics, 
as it would make sense for agencies to share access to their databases in order to be more 
effective in accomplishing their mission. As noted above, significant research is needed to 
mature template protection algorithms (feature transformation vs biometric cryptosystems) 



CITeR Technology Roadmap 2022 | 45

SECTION IV  |  Concept Families: Security, Privacy, Perception

as well as to evaluate their relative merits and design tradeoff against the existing encryption-
based solutions. CITeR can play a major role in connecting affiliates with researchers to 
jointly initiate such studies.

Keywords
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	 5.3 Technology Concept: Perception

					    5.3.1	 Background

Although people are now far more likely to encounter and willingly engage with biometric 
recognition technologies in the course of their day than just a few years ago, automated 
biometric recognition—what it is and how it is used—remains a technological mystery 
to most people. Against this backdrop, perceptions of the technology are all-too-easily 
(negatively) influenced by news reports of wrongful arrests predicated on erroneous 
facial recognition matches, exposés about elaborate biometrically-enabled surveillance 
systems, and revelations of questionable biometric data collection practices. The security 
and efficiency gains expected to be realized through the adoption of automated biometric 
recognition are thus at risk of being lost in some cases for want of a better understanding of 
the technology and its many and varied applications.

https://doi.org/10.1155/2021/8873429
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Figure 1. Example results from a survey showing differences in trust related to biometric recognition 

technology in different parts of the work (left) and dimensions of consideration (right)  [1]

5.3.2	 Future Vision

In our future vision, we expect that when a person uses a biometric system, it is clear to 
the user what the system is doing and how it might be different from other applications. It 
is also clear what the biometric data is being used for and the privacy principles that apply.  
Decision/policy makers understand differences in biometric technologies and applications 
in order to develop reasonable laws, policies, and practices.  When a biometric decision is 
made, mechanisms are in place to explain the automated decision, e.g. explainable AI.

CITeR’s role is to educate decision makers and the general public on biometric technology, 
applications, architectures, and databases.   Explicit development of laws and policies is 
outside the scope of CITeR, but rather we envision that we provide educational material to 
ensure policies are based on accurate understanding of the technology.

Education content includes aspects such as what databases are queried in a biometric 
match (e.g. criminal databases, drivers license photos, passport photos) and what images 
are used to query a database (e.g. video from CCD after a crime is committed, people in a 
public square).  Also this understanding will be useful for developing safety mechanisms to 
control things like when a database is queried, when is a database search allowed, e.g. which 
crimes allow a search, whether a court order is needed, and whether a system is auditable  
Additionally, CITeR research includes studies of perception and trust in biometric recognition 
including focus groups, surveys, etc.

CITeR also has a role in terms of developing methods to explain a biometric decision, i.e. 
explainable AI.  Biometric recognition has largely moved to Deep Neural Networks (DNNs). 
However, due to their complexity and multiple layers of abstractions, it is not easy to obtain 
a clear, interpretable relationship between the inputs and outputs of a DNN. The field of 
eXplainable AI aims to address this issue by explaining and representing this relationship 
in a human understandable terms [2]. This explainable relationship plays a crucial role in 
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various use cases such as decision making involving both humans and DNNs, verifying 
and debugging generalization of the model, efficient retraining of models and improving 
transparency to prevent unexpected behavior and unintended discrimination. 
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6.0	 Concept Family: Fairness, Demographic Differentials, Distinctiveness

		  6.1	 Technology Concept:  Fairness

				    Introduction

In Machine Learning (ML) and consequently in Biometrics as well that is relying on ML, fairness 
issues arise from the analysis of figures of merit (e.g. accuracy) in specific demographics groups 
(e.g., gender, ethnicity, race, revenue levels, or any covariate in general) and the observation 
that operational conditions originally estimated cannot be reproduced in those. The large-scale 
deployment of such systems in so many different scenarios raises the debate about its fairness 
and its impact on our lives.

				    6.1.1	 Background

Many criteria to assess and address fairness in ML problems have been proposed over 
the years, each phrasing the problem differently. Recent work hypothesizes that most of 
the criteria described in the literature boil down into three major categories of conditional 
independence, and they are independence, separation, and sufficiency.

SECTION IV  |  Concept Families: Security, Privacy, Perception
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Independence (also called demographic parity) requires that a classifier must be 
independent of the sensitive attributes, i.e., the prediction must be identical no matter 
which of the sensitive attributes is present. This is also addressed as demographic parity 
or statistical parity. Separation (also addressed as equalized odds) explicitly acknowledges 
that the classification output might be correlated with the sensitive attributes which might 
be a desirable property in some applications. Sufficiency requires that the same decision 
threshold is used and independent sensitive attributes such as demographic factors.

In the biometrics literature, aspects of fairness are recently addressed for some biometric 
traits. For instance, the Face Recognition Vendor Test (FRVT) has a special report addressing
demographic effects in face recognition (FR), mostly observing the effect of race and gender 
on more than 100 Commercial-off-the-Shelf (COTS) systems. Recent work observed that the 
“Other Race Effect”, which is well-known in humans, can also be observed in FR algorithms 
– FR systems developed in Asia are more accurate with Asians than with Caucasians, and 
vice-versa. Furthermore, this work also highlights the role that image quality plays in fairness 
in FR systems. It was observed that four COTS systems presented higher verification rates 
for Caucasians than East Asiatics, using the Ugly set from The Good, The Bad, and The Ugly 
dataset. The FRVT report also raised similar observations. Studying race, consistently higher 
False Match Rates (FMR) with African American cohorts compared with Caucasians were 
observed using two COTS systems. The impact of age in FR was a topic of an extensive study. 
Recently, Wang et al. introduced the Racial Faces in the Wild dataset, a subset of the MSCeleb-
1M whose identities are organized in four different races: Caucasians, Black, Indian and 
Chinese. Using such data to test the independence criterion, the authors regularized different 
deep neural networks at training time by minimizing the Mutual Information between the FR 
classifier and the demographic attributes. In other biometric traits, biases toward gender were 
also observed in the periocular region of the face. For instance, previous work demonstrated 
that several periocular recognition systems perform better with male subjects than with 
females. The NIST SRE is the most relevant benchmark for speaker recognition, and along with 
past editions, it consistently evaluates error rates looking at gender cohorts.

6.1.2	 Future Vision
In recent work, Pereira and Marcel proposed a novel figure of merit, the Fairness Discrepancy 
Rate (FDR)¹, to assess fairness in biometric verification systems and address how the 
biometrics community considers fairness in operational conditions. The vast majority 
of works in biometric verification that assess demographic discrepancies does so by 
comparing ROC curves, DET Curves and/or the area under those curves. For instance, the 
area under the ROC curve is used to assess how fair a biometric verification system is under 
different demographic groups. ROC curves measure the True and False Positive Rates (TPR 
and FPR, respectively) trade-offs. Although this seems sensible to assess demographic 
discrepancies, it assumes that the verification decision threshold  is demographic-specific. 
Assessing fairness with those standard figures of merit gives the impression that biometric 
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verification systems are fair while they are not. The FDR assesses fairness by verifying that 
both FMR and FNMR are equally separable between different demographic groups under the 
same decision threshold and allows to compare how fair two biometric verification systems 
are with respect to different demographic attributes for single decision thresholds.

Keywords
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		  6.2 	Technology Concept: Demographic Differentials in Operational Systems

				    Introduction

Algorithm-based demographic differentials are often amplified in operational systems as a 
result of other factors, including the quality of the biometric sample capture equipment, the 	
quality of the biometric reference, overall system design (e.g., camera placement relative 
to the subject), and environmental conditions. The demographic effects that have been 
documented through controlled testing, such as that conducted by NIST, thus can be even 
greater in real-world applications.

				    6.2.1	 Background

A biometric recognition system’s performance is a function of many factors. As awareness 
of the problem of algorithmic bias has grown, so too has attention on these other critical 
elements of the biometric recognition process. Research carried out by the United States 

Department of Homeland Security, for example, has shown that the quality of the image 
acquisition system in facial recognition systems “…can strongly affect (magnify or eliminate) 
measured differences in algorithm accuracy across demographic categories.” Elsewhere, an 
analysis of an automated border control system revealed a significant variation in matching 
performance between different kiosks located in the same airport, despite the fact that all 
of the kiosks were identical and using the same algorithm. On inspection, it was discovered 
that variations in natural light were influencing the performance of the individual kiosks. 
The importance of non-algorithmic factors is known to extend to other biometric modalities 
as well. A study of a fingerprint recognition system yielded evidence that the observed 
differences in demographic performance might be a consequence of the quality of the 
equipment used to capture the biometric sample.

6.2.2	 Future Vision
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While the problem of algorithmic bias has been extensively documented in relation to facial 
recognition technology, considerable work remains to be done to understand the full scope 
of the problem in relation to other biometric modalities. That means there is still a great deal 
to be learned about how algorithmic biases impact different types of biometric recognition 
systems and how any demographic effects can be mitigated or eliminated through 
improvements or changes in other parts of the system. In the near-term, therefore, additional 
research effort should be directed towards understanding all of the factors, along with their 
interactive dynamics, that affect overall system performance. Assuming the problem of 
algorithmic bias remains statistically relevant, the longer-term objective would be to develop 
systems that can compensate for any algorithm-based variances.

Keywords
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6.3	 Technology Concept: Distinctiveness

		  Introduction

		  The “distinctiveness” of a biometric trait refers to how unique that trait is to an individual. In some  
		  cases, the term “individuality” has been used to suggest that a biometric trait can be  
		  unambiguously associated with a single individual. However, it is generally agreed that determining  
		  the individuality of a biometric trait may not be easy, but that computing the distinctiveness or  
		  uniqueness of a given biometric trait might be more practical and relevant [refs]. 

		  6.3.1	 Background

Consider a fingerprint image, F,  from which a set of n minutiae points are extracted. What is 
the probability that k of these n minutiae points match with k minutiae points from another 
fingerprint image corresponding to a different finger? More generally, how many other 
fingerprints have the same configuration of k minutiae points as fingerprint F does? This is 
sometimes referred to as the probability of random correspondence. This can be viewed as a 
measure of the distinctiveness of a fingerprint [refs]. 

A similar question has been posed for the face and iris modalities with respect to the 
features commonly used to represent them  [refs]. Thus, the distinctiveness of a biometric 
trait depends upon (a) the specific features used to denote it, and (b) the “model” used to 
describe the features. 

To be added:  describe “features” and “models”, problems due to identical twins and how 
identical twins impose an upper bound on recognition accuracy], Overuse of the word  
“unique” - cautionary.
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6.3.2	 Future Vision

The distinctiveness of a biometric trait has practical utility in forensic applications where 
the nature and quality of the evidence has to be evaluated. It is also beneficial in developing 
more effective biometric recognition algorithms that account for individual-specific features. 
Further, knowing the distinctiveness of an individual’s trait can help in better addressing the 
problem of dictionary attacks (such as MasterPrint attack). 

Some of the research problems in this area include:

1.	Developing and validating methods for estimating the distinctiveness of a biometric trait  
			  with respect to some features 
2.	Determining how this information can be incorporated into the biometric comparator for  
			  improving recognition accuracy 
3.	Large-scale data collection representing different demographic, cultural, and social groups
		  · 	 Determining if degree of uniqueness varies across these groups 
4.	Studying the impact of data quality on the distinctiveness of a trait
		  · 	 Factors impacting quality must be considered 
		  · 	 Does “degree of uniqueness” vary across age 
5.	Designing fusion techniques based on degree of uniqueness of a person’s trait  

Keywords
· Uniqueness                · Evidential Value            · Individuality Models       · Dictionary Attacks     
· Identical Twins 
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7.0	 Concept Family: Other, extension to areas beyond biometrics

		  7.1	 Technology Concept: Optics and Biometrics

Just as the prints on a person’s fingers and palms form a unique biometric, so too do the vein 
structures underneath the skin—each individual has a unique blood vessel pattern in their fingers 
and palms that others cannot mimic. Traditionally, optical methods scanning the venous structures 
in a person’s hand use NIR light (750 nm to 1500 nm) and polarization. NIR light can penetrate 
through biological tissue of about 3 mm where it’s absorbed at a specific rate by the deoxygenated 
blood in veins, creating a darker shadow in the image that effectively maps the venous vasculature 
in the palm or the finger. 

There are two main methods of palm-vein imaging: reflection or transmission. The reflection method, 
which relies on light absorption and reflection to reconstruct the vascular image, is most common. In 
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this method, the illuminating component (the light source) and the capturing component (the sensor 
or camera) are on the same side of the target—the front. The transmission method, however, places 
the target in the middle, sandwiched between the illuminating and capturing components. Of course, 
this requires a stronger light penetration and is therefore less common.

These biometric systems frequently use CCD cameras to capture the palmar or finger veins. NIR 
CCD cameras provide higher resolution; however, the equipment can be expensive. Most vein-
imaging modalities use LED light sources emitting in the 800-nm-to-900-nm range for an optimal 
image. Adding polarization or NIR filters boosts the resolution of the vascular structures in the 
biological tissue. Polarization transforms a light wave to only vibrate in a single plane, like how 
polarized sunglasses block glare. In the same vein, polarizer lenses placed in between the light 
source and the camera filter out light reflections and scattering from the surface of the skin to 
provide better contrast between the vascular structure and the surrounding tissue.

Moving along the biometric three-step process, the captured venous image is then uploaded into 
an image-processing algorithm for feature extraction followed by authentication. The biometric 
authentication protocol includes two modes: the registration and enrollment mode, which registers 
the individual’s biometric into the database, and the authentication process, which verifies the 
individual’s identity. Once enrolled, the authentication system can then recognize the individual with 
the biometric authentication protocol as a legitimate or an adversary drone.

Just as 3D facial recognition is more secure than 2D systems, 3D vein imaging biometrics is harder 
to spoof than 2D techniques. Photoacoustic tomography is a burgeoning imaging modality that can 
overcome the light-scattering limits in human tissue that make 3D biometrics difficult to obtain. 
In this technique, a laser illuminates and is absorbed by blood vessels in human tissue, creating 
an ultrasonic shockwave, which is subsequently detected by an ultrasonic transducer array. Then, 
using a physics-based acoustic source localization algorithm, a 3D image of the blood vessels is 
reconstructed. Just last year, our team at NEC Laboratories America and the University of Buffalo, 
USA, demonstrated accuracies greater than 99% and false acceptance rates as low as 0% with  
this system. 

Key advantages of optical-based biometric technologies are non-invasiveness, harmlessness and 
the ability to obtain biometrics at a distance. Research that will see rapid growth in the near future 
will address the persistence of those advantages amidst requirements of the “new normal,” such as 
contact-freedom, preservation of privacy and equity and anti-spoofing. That includes the biometric 
application of advanced imaging modalities, such as photoacoustic tomography, optical coherence 
tomography and lidar.
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Figure 1.  Example of vein imaging biometrics system and resulting images.
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