Download CITeR Software

Periodically, CITeR makes available for download specific software developed as a part of its research portfolio which Center Members believe may be of significant value to the biometrics community. Regular CITeR Members have already received executable versions of these software tools and work with CITeR faculty in their use and advancement.

Software tool downloads contain documentation but are otherwise unsupported research versions. No guarantees are either expressed or implied regarding these public research versions.

  • Biometric Cryptosystem Software Implementation:  This is our software implementation of the Cambridge Biometric Cryptosystem, an algorithm that confirms user authenticity through the use of an iris template. The user of the system is enrolled by providing an iris template and receiving a randomly generated key. These two inputs are used to generate two variables that are stored on a physical token that the user receives. The first of the generated variables is a hash of the original key. The second variable, called a locked template, is the result of performing an exclusive-or (XOR) function between the enrollment template and the result of putting the randomly generated key through Reed-Solomon and Hadamard encoding sequentially. When a user attempts to gain access to the system, the user provides the iris sample and the physical token. The locked template is XORed with the user’s sample template, producing the encoded key with errors introduced by the differences between the enrollment template and the sample template. This result is then put through Hadamard decoding, followed by Reed-Solomon decoding. If the person attempting to access the system is a valid user with the correct token, the result of the decoding will be the same as the original key, then the user is deemed valid and granted access. If someone is trying to access the system using someone else’s token, the result will be different; then the user is treated as an imposter and is not given access to the system. This software implementation in C is done by Charles McGuffey (currently with Carnegie Mellon University), under the direction of Drs. Chen Liu and Stephanie Schuckers (Clarkson University). The software and accompanying documentation are available for download at:

  • PRESS: PRESS is a tool to help researchers to analyze data collected on biometric authentication devices. It has been created at St. Lawrence University, through generous funding from CITeR. PRESS is designed to simplify the analysis of bio-authentication data by making it easy for the user to create many of the basic statistical summaries in common usage. These include: confidence intervals, genuine vs. imposter histograms, EER calculation and ROC curves. In addition PRESS has a tool for determining the number of individuals that need to be tested under certain specified conditions. PRESS handles data either in text or Excel format. It has been designed by Dr. Michael Schuckers (St. Lawrence University) and coded by Nona Mramba (University of Maryland) and C. J. Knickerbocker (St. Lawrence University). PRESS and accompanying documentation will be available at the following website:
  • MUBI: MUBI addresses the growing interest in the prediction and evaluation of performance of systems which integrate multiple biometric devices. Starting with the information about matching scores of each individual biometric device, MUBI generates their respective ROC curves. Then, it calculates the whole range of performance characteristics (genuine accept vs. false accept rates) of different multibiometric system configurations. Finally, the tool assists users with the selection of cut-off scores of each individual device, such that they meet the desired performance goal. The tool was developed under the direction of Dr. Bojan Cukic of West Virginia University. Its JAVA implementation was completed by Martin Mladenovski, currently with Microsoft. MUBI tool and the accompanying documentation will be made available for download at